Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
2.
Infect Genet Evol ; 89: 104736, 2021 04.
Article in English | MEDLINE | ID: covidwho-1051860

ABSTRACT

Since 2002, the world has witnessed major outbreaks of acute respiratory illness by three zoonotic coronaviruses (CoVs), which differ from each other in pathogenicity. Reasons for the lower pathogenicity of SARS-CoV-2 than the other two zoonotic coronaviruses, SARS-CoV and MERS-CoV, are not well understood. We herein compared the codon usage patterns of the three zoonotic CoVs causing severe acute respiratory syndromes and four human-specific CoVs (NL63, 229E, OC43, and HKU1) causing mild diseases. We found that the seven viruses have different codon usages, with SARS-CoV-2 having the lowest effective number of codons (ENC) among the zoonotic CoVs. Human codon adaptation index (CAI) analysis revealed that the CAI value of SARS-CoV-2 is the lowest among the zoonotic CoVs. The ENC and CAI values of SARS-CoV-2 were more similar to those of the less-pathogenic human-specific CoVs. To further investigate adaptive evolution within SARS-CoV-2, we examined codon usage patterns in 3573 genomes of SARS-CoV-2 collected over the initial 4 months of the pandemic. We showed that the ENC values and the CAI values of SARS-CoV-2 were decreasing over the period. The low ENC and CAI values could be responsible for the lower pathogenicity of SARS-CoV-2. While mutational pressure appears to shape codon adaptation in the overall genomes of SARS-CoV-2 and other zoonotic CoVs, the E gene of SARS-CoV-2, which has the highest codon usage bias, appears to be under strong natural selection. Data from the study contribute to our understanding of the pathogenicity and evolution of SARS-CoV-2 in humans.


Subject(s)
Adaptation, Physiological/genetics , Codon , SARS-CoV-2/genetics , Zoonoses/genetics , Animals , COVID-19/virology , Evolution, Molecular , Genome, Viral , Humans , Phylogeny , SARS-CoV-2/physiology , Species Specificity
3.
Hum Genomics ; 14(1): 30, 2020 09 11.
Article in English | MEDLINE | ID: covidwho-751135

ABSTRACT

The COVID-19 pandemic has strengthened the interest in the biological mechanisms underlying the complex interplay between infectious agents and the human host. The spectrum of phenotypes associated with the SARS-CoV-2 infection, ranging from the absence of symptoms to severe systemic complications, raised the question as to what extent the variable response to coronaviruses (CoVs) is influenced by the variability of the hosts' genetic background.To explore the current knowledge about this question, we designed a systematic review encompassing the scientific literature published from Jan. 2003 to June 2020, to include studies on the contemporary outbreaks caused by SARS-CoV-1, MERS-CoV and SARS-CoV-2 (namely SARS, MERS and COVID-19 diseases). Studies were eligible if human genetic variants were tested as predictors of clinical phenotypes.An ad hoc protocol for the rapid review process was designed according to the PRISMA paradigm and registered at the PROSPERO database (ID: CRD42020180860). The systematic workflow provided 32 articles eligible for data abstraction (28 on SARS, 1 on MERS, 3 on COVID-19) reporting data on 26 discovery cohorts. Most studies considered the definite clinical diagnosis as the primary outcome, variably coupled with other outcomes (severity was the most frequently analysed). Ten studies analysed HLA haplotypes (1 in patients with COVID-19) and did not provide consistent signals of association with disease-associated phenotypes. Out of 22 eligible articles that investigated candidate genes (2 as associated with COVID-19), the top-ranked genes in the number of studies were ACE2, CLEC4M (L-SIGN), MBL, MxA (n = 3), ACE, CD209, FCER2, OAS-1, TLR4, TNF-α (n = 2). Only variants in MBL and MxA were found as possibly implicated in CoV-associated phenotypes in at least two studies. The number of studies for each predictor was insufficient to conduct meta-analyses.Studies collecting large cohorts from different ancestries are needed to further elucidate the role of host genetic variants in determining the response to CoVs infection. Rigorous design and robust statistical methods are warranted.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/genetics , Host-Pathogen Interactions/genetics , Pneumonia, Viral/genetics , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/epidemiology , Genetic Variation/genetics , Humans , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Pandemics , Phenotype , Pneumonia, Viral/epidemiology , Severe acute respiratory syndrome-related coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/pathogenicity , SARS-CoV-2 , Severe Acute Respiratory Syndrome/epidemiology , Severe Acute Respiratory Syndrome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL